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Wavelet Spectral Finite Elements for Wave Propagation in 

Composite Plates 

3
rd

 and 4
th

 year technical progress report 

 

(Contract no:  FA23861214005) 

Executive Summary 

The principal goal of this research is to advance the technology of structural health 

management for composite structures. The use of composites for aerospace structures 

is increasing rapidly; however, composite structures are susceptible to impact damage 

and delaminations and cracks may reach critical length before visual detection. Wave 

propagation based methods have shown promise for SHM of composite structures. 

The spectral finite elements (SFE) method is highly suitable for wave propagation 

analysis due to its frequency domain approach, which yields models that are many 

orders smaller than conventional FEM. Also, the frequency domain formulation of 

WSFE enables direct relationship between output and input through system transfer 

function. Wavelet spectral finite element (WSFE) method overcomes the signal “wrap 

around” problem to accurately model 2-D plate structures of finite dimensions, unlike 

the existing Fourier transform based SFE. In addition, initial conditions can be 

elegantly specified. The specific accomplishments of the research are: 

 

1. Developed WSFE model for Healthy plate, damaged composite plate with 

transverse crack and healthy stiffened structures (with plate beam connections 

and plate-plate connections); 

2. Validated WSFE modeling of Lamb wave propagation in healthy composite 

plates through experimental measurements and conventional FEM; 

3. Implemented ‘baseline-free’ Damage Force Indicator method for delamination 

detection using dynamic stiffness matrix from WSFE model of healthy plate 

and stiffened structures; 

4. Developed Modified Time Reversal method for Lamb wave based ‘baseline-

free’ damage diagnostics; and investigated effect of tone burst center 

frequency on instantaneous phase based delamination detection (This was 

accomplished by my Co-PI from USA, Dr Ratan Jha at Clarkson University) 

 

 All the objectives laid out in the proposal have been accomplished.  The research 

resulted in significant visibility to the groups here at IISc and Dr Jha’s group at 

Clarkson University. The research has resulted 3 journal papers and 9 conference 

papers so far and three articles are under preparation for journal publication.  

1. SUMMARY OF ACCOMPLISHMENTS  

 

Year 1
1
 Accomplishment: 

 Formulated Wavelet Spectral element for a healthy composite plates and used 

the formulated spectral element to obtain all the lamb wave modes. Validated 

the element with the conventional finite elements 

 Formulated the wavelet spectral element for a plate with transverse cracks and 

validated this damaged element with conventional finite elements 

                                                        
1 Year 1 and Year 2 work was performed under contract Number FA 23861014086 
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Year 2 Accomplishment: 

 Development Wavelet Spectral elements for a composite plates with 

arbitrarily oriented cracks 

  Development Laplace Transform based Spectral element formulation for 

plates with cracks 

  Experimental Validation of health and Damaged spectral element. 

Experiments performed (at Clarkson University) 

 

Year 3 Accomplishment: 

 Developed Coupled FEM-Spectral Element Model for composite plates with 

arbitrary oriented cracks 

 Experimentally validated the model (at Clarkson University) 

 Formulated new damage measure to locate and quantify the extent of damage 

 Experimentally validated the formulated damage measure (at Clarkson 

University) 

 

Year 4 Accomplishment: 

 Developed Spectral Finite element for stiffened aircraft structures. Two 

variants of elements developed one based on Plate-beam connections and the 

second based on Plate-Plate connections 

 Numerically validated the developed spectral FEM through conventional FEM 

 Extended the damage force method to predict debonds in stiffened structures. 
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TECHNICAL REPORT for Years 3-4 
In this report, we will present the technical progress of the project for the years 3 and 

4  

  

ABSTARCT 

In this work, the wave propagation analysis of built-up composite structures is 

performed using frequency domain spectral finite elements, to study the high 

frequency wave responses. The report discusses basically two methods for modeling 

stiffened structures. In the first method, the concept of assembly of 2D spectral plate 

elements developed and reported in the earlier report is used to model a built-up 

structure. In the second approach, spectral finite element method (SFEM) model is 

developed to model skin-stiffener structures, where the skin is considered as plate 

element and the stiffener as beam element. The SFEM model developed using the 

plate- beam coupling approach is then used to model wave propagation in a multiple 

stiffened structure and also extended to model the stiffened structures with different 

cross sections such as T-section, I section and hat section. A number of parametric 

studies are performed to capture the mode coupling, that is, the flexural-axial 

coupling present in the wave responses.   

 

1. INTRODUCTION 

 

The stiffened composite plates and the composite box-type structures are the building 

block of the wing sections of an aircraft and modeling wave propagation in these 

complex structures is still a challenging area of research. However, many methods are 

available, which accurately model the wave propagation in a simple rod, beam and 

plate type structures. Wave propagation problems, which are in the high frequency 

region, using the numerical methods such as finite difference method (FDM) 

(Strickwerda, 1989), the boundary element method (BEM)(Brebbia et al., 1984; Cho 

and Rose,1996), and finite element method (FEM) (Talbot and Przemieniecki, 1975; 

Koshiba et al., 1984; Zienkiewicz, 1989; Verdict et al., 1992; Yamawaki and Saito, 

1992; Alleyne and Cawley, 1992) are computationally expensive and require a large 

computational memory, even in the case of 1D wave propagation problem. Basically, 

the FEM based methods require 15-30 nodes per shortest wavelength of the loading 

frequency to capture the structural wave parameters accurately (Schulte et al., 2010). 

The finite strip element method, which needs only a low level discretization has the 

problems due to the variable size of strip stiffness matrix and the requirement for the 

modifications of spline functions at boundary nodes (Cheung, 1976; Liu et al., 1990). 

Mass spring lattice model (MISLM), where lumped parameters are used to calculate 

inertia and stiffness properties (Delsanto and Mignogna, 1998; Yim and Sohn, 2000) 

and local interaction simulation approach (LISA), which is a heuristic approach 

(Delsanto et al.,1992; Delsanto et al.,1994; Delsanto et al.,1997), are some of the 

different approaches for modeling wave propagation, which are available in the 

literature. In all the above methods, proper distribution of mass matrix is a difficult 

step while modeling, in order to bring out accurately the wave characteristics of the 

structure. Various methods are available, which combines the accuracy of the spectral 

methods (Gottlieb and Orszag, 1977) and the flexibility of FEM. Among the spectral 

based methods, in the recent years, the fast Fourier transformation (FFT)-based 

spectral finite element method (SFEM), proposed by Doyle (1988) and the time 
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domain spectral element, proposed by Patera (1984), are the two methods, which are 

extensively used by the researchers, to model wave propagation in structures. In SEM, 

the use of, Lagrange polynomials at Gauss-Legendre-Lobbatto nodes or the 

Chebyshev polynomials at Chebyshev-Gauss-Lobatto points, makes the method 

advantageous for wave propagation problems, over the conventional FEM (Rucka, 

2010). The major benefits are, the requirement of less number of nodes per shortest 

wavelength (10 or less, Rucka, 2010) and the diagonal mass matrix obtained by 

integrating the element matrices using the Gauss-Legendre-Lobbatto quadrature. In 

fact, SEM has been used extensively for solving wave propagation problems of 

simple structures using 1D (Kudela et al., 2007a), 2D (Zak et al., 2006; Kudela et al., 

2007b) and 3D analysis (Peng et al., 2009; Kudela and Ostachowicz, 2009). On the 

other hand, in SFEM, the governing equation is solved exactly, in the frequency 

domain, which is used as interpolation function for element formulation and the 

inertial distribution of the structure is modeled, quite accurately. In the absence of any 

discontinuities, SFEM needs only one element to model a structure of any length. 

Further, SFEM is a fairly well established method and is extensively used to solve 

wave propagation problems in 1-Dwaveguides such as rods, beams or frames and in 

2-D planar structures such as plates or membrane (Doyle, 1997; Mahapatra and 

Gopalakrishnan (2003); Chakraborty and Gopalakrishnan (2006); Gopalakrishnan et 

al., 2008). Monograph written by Gopalakrishnan et al. (2008) gives a complete 

overview of formulation of SFEM for 1-D and 2-D waveguides. The major drawbacks 

of SFEM include the problems due to the periodicity of the Fourier transform and the 

difficulty of obtaining the exact solutions of the transformed governing differential 

equations for every structure. However, the issues due to the periodicity of the Fourier 

transform can be avoided by using wavelet transform (Mitra and Gopalakrishnan, 

2005) or Laplace transform (Igawa et al., 2004). Ham and Bathe (2012) proposed an 

enriched finite element method for 2D structures, which combines the advantages of 

finite element and spectral techniques by preserving the fundamental properties of 

FEM. The method does not embed ‘a priori’ specific wave solutions and hence it can 

be extended for solving complex problems, which involve material nonlinearities. In 

this method, harmonics to enrich the solution space can be selectively added, which 

makes it flexible and efficient for practical usage. In this work, we will use wavelet 

spectral element to model the built up composite sections using Debuanchis wavelets 

(See Mira and Gopalakrishnan,  2005 for the details of this method) 

 

Modeling of stiffened and built-up structures is an order more complex compared to 

the planar structures. These structures can have plate-plate interfaces or plate-beam 

interfaces. A few works on modeling of stiffened structure using FEM for vibration 

analysis is reported in the literature such as Mukherjee and Mukhopadhyay (1988), 

Palani et al. (1992), Lee and Lee (1995), Kolli and Chandrashekhara (1996), Edward 

and Samer (2000), Gangadhara (2003) and Thinh and Khoa (2008) etc. However, 

modeling wave propagation in built-up structures is even more difficult and the 

literature available on wave propagation studies in these structures is minimal. Elastic 

wave propagation analysis in stiffened structure using analytical methods can be 

found in Fahy and Lindqvist (1976) and Grice and Pinnington (2000a,b). Some of the 

models for wave propagation in stiffened structure use the concept similar to 

homogenized model proposed by Timoshenko (1921) and Timoshenko and 

Woinowski-Krieger (1989). Gavric (1994) developed a numerical approach to model 

the cross section displacements using FEM, where the harmonically oscillating 

function is used to describe the displacement function. Orrennius and Finnveden 
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(1996) extended the Gavrric’s original method (Gavric, 1994) to analyze the wave 

propagation in rib-stiffened plate by considering the built-up plate as an equivalent 

orthotropic plate, using a semi-analytical finite element technique, with improved 

computational efficiency. This work is limited to analyze the freely propagating 

waves. With the application of a load, the criteria for choice of an equivalent structure 

are more extensive, as the corresponding impedances must also be matched in 

addition to matching the wavenumbers of the propagating waves. Ichchou et al. 

(2008a,b) extended this work to the high frequency range using the concept of 

inhomogeneous wave correlation method (IWC). Satish Kumar and Mukhopadhyay 

(2002), developed a new stiffened plate element, which can accommodate any 

number of arbitrarily oriented stiffeners. Finnveden (2004) used an approach called 

waveguide-FEM to solve wave propagation problems of built-up thin walled 

structures. Lee et al. (2004) used higher order plate theory to investigate the dynamic 

behavior of multiply folded composite laminates. Mitra et al. (2004) developed a new 

super convergent thin walled composite beam element for wave propagation analysis 

of box beam structures. FEM based wave propagation model for I section can be 

found in Greve et al. (2005) and Aldrin et al. (2006) modeled Tsection geometry with 

fillets with and without notch defects. These FEM based models can model wave 

propagation in complex structures quite efficiently. However, they are 

computationally expensive and the modeling involves a crude error-bound 

approximation due to the numerical stability limit in computation (Gopalakrishnan et 

al., 2008). Some of the recent built-up structure models use SEM, due to its ability to 

accurately model complex structures and its computational efficiency, when 

compared to FEM. Rucka (2010) studied the longitudinal flexural wave propagation 

in a steel L-joint. Schulte et al. (2010), used the Gauss-Lobatto-Legendre (GLL) 

spectral element discretization based upon quadrangular elements for the wave 

propagation analysis of isotropic and anisotropic shell-structures and stiffened panels. 

Similarly, Schulte and Fritzen (2011) used SEM to study the propagation of waves in 

a curved panel with stiffeners. The model is computationally efficient and when 

compared to the FE, only five to six nodes (depending on the degree of the 

interpolation polynomial) per shortest wavelength of the excited frequency range are 

necessary to capture the structural behavior with the same accuracy as 15-30 nodes, 

which are needed using lower order FE. In the wave propagation analysis of 1D beam 

and 2D plate structures the requirement of 5e6 nodes per wavelength makes SEM 

computationally expensive, when compared to SFEM. In the area of SFEM based 

modeling of wave propagation in built-up structures, a wave propagation model for 

3D frame structures by Doyle and Farris (1990) and a model by Danial et al. (1996), 

to analyze wave propagation in folded plate structures, are some of the earlier works 

reported in the archival of literature. However, these models are developed for 

isotropic structures. In this work, our aim is to develop a wavelet based wave 

propagation model for anisotropic stiffened structures of different cross sections, 

retaining the advantages of SFEM (in the case of 1D and 2D structures) such as 

computational efficiency, small system size and its ability to distribute the mass 

exactly, over the other methods, which are available in the literature. Further, Wavelet 

transform based damage models are efficient in detecting small scale damages in 

composite structures (Gopalakrishnan et al., 2008) and hence, in future the model can 

be extended as an efficient damage model for composite stiffened structures, with 

minimum system size. In the SFEM environment, modeling of stiffened and built-up 

composite structures, which involves plate-plate coupling, plate-beam coupling and 

different sections such as I, T and hat etc., is a novel concept and are quite 
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complicated and challenging. Modeling philosophy could be same as adopted in 

FEM, however these assembly in SFEM is different. Here, we first generate the 

dynamic stiffness matrices of each of the sub elements of composite construction, 

transform these dynamic stiffness matrices to global coordinates before assembling 

them. However, the method of coupling the structure with plate-plate interface and 

plate-beam interface are quite different. That is, spectral plate element involves 

solution that has double series summation to account for spatial and temporal modes, 

while the beam element solution involves only the summation of temporal modes. 

Hence, the couplings of structures involving plate-plate and plate-beam interfaces are 

treated separately. The use of SFEM based plate elements (Samaratanga et.al, 2013) 

and beam elements (Gopalakrishnan and Mira Mitra, 2011), which are 

computationally efficient, compared to the other methods such as FEM, SEM etc., 

makes the Wavelet transform-based SFEM model for stiffened structures, 

computationally efficient. Further, the fundamental aspects of modeling of built-up 

structures is that the presence of mode coupling. That is, an axial impulse creates 

flexural waves in the two planes of bending in a 3-D built-up structure. Keeping track 

of these multiple modes is indeed very challenging and this is will be addressed in 

future project. 

 

The report is organized as follows. In the next section, a very brief description of the 

development of beam element and plate element, using SFEM is given, which is 

followed by the brief description of the method of modeling stiffened structures and 

box structures by assembling spectral plate elements. In the following section a 

method is developed to model stiffened structures using plate-beam assembly. The 

method of plate-beam assembly is then extended to model a stiffened structure, which 

contains T, hat and I sections. In the results section, the SFEM model using plate-

plate assembly is first validated with 2D FE results and is then used to perform the 

high frequency wave propagation analysis of skin-stiffener structure and box 

structure. In the next sub-section, the method of modeling stiffened structures using 

plate-beam coupling is validated using 2D FE results and is used for modeling wave 

propagation in multiple stiffened structure. The plate-beam coupled SFEM model is 

then used to model high frequency wave propagation in stiffened structures with 

stiffeners of different cross sections such as T-section, I-section and hat section. A 

number of parametric studies are performed in each section, mainly to characterize 

the effect of flexural-axial coupling on the wave response.   

 

2. WAVELET SPECTRAL ELEMENT FORMULATION 

 

Wavelet spectral beam element formulation is reported in the monograph 

Gopalakrishnan and Mira Mitra (2011). This element is used to model the beam 

stiffener in the built up section. The details of the formulation are skipped here to 

keep the report short. The beam coordinate axis and the degrees of freedom is shown 

in Fig.1 

 

The formulation begins with formulating governing differential equation, 

transforming to frequency domain using wavelet transform, performing uncoupling of 

wavelet coefficients using eigenvalue analysis, and writing the solution to the 

governing equation and using this solution to the spectral FE formulation. Finally, we 

will get the force-displacement relation through dynamic stiffness matrix as 
ˆ ˆ ˆ{ } [ ]{ }                                            (1)F K u  
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Here, ˆ{ }F  is the nodal force vector of size 6 x 1, ˆ[ ]K  is the dynamic stiffness matrix 

of size 6 x 6 and ˆ{ } u  is the frequency domain displacement vector of size 6 x 1 

 

Next we describe the formulation of the wavelet spectral plate element. This element 

is again formulated in Samaratanga et.al, 2013 and also reported in the earlier reports 

submitted by the PI. 

 
 

Figure 1: (a) Beam Geometry (b) Coordinate system and degrees of freedom 

  

The displacement field unlike in beam is expressed as double summation as given 

below 

                        
In the above equation, vector { }Tu v w    denotes the three displacements in the 

3 directions and two slopes are  and  , respectively.  In the above equation, η 

denotes the horizontal wavenumber. The plate geometry and the degrees of freedom 

are shown in Fig 2. 

 
 

Figure 2: (a) Plate Geometry (b) Coordinate system and degrees of freedom 

 

Following the same procedure as outlined for beam spectral element, this process will 

again yield a dynamic stiffness matrix ˆ[ ( , )]n mK   , which is dependent on both 

frequency ω and horizontal wavenumber η and the size of this matrix will be 10 x 10. 

Here, n and m are the frequency and horizontal wavenumber indices.   

 

3. MODELING OF STIFFENED STRUCTURES USING PLATE ELEMENTS 

 

(2) 
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A method of assembling 2D plate elements, which can be used for modeling complex 

structures, like stiffened structures and box structures (Figs. 3 and 4), is shown in Fig. 

5. In stiffened structure, skin (element 1-2, Fig. 5) and the stiffener (element 2-3, Fig. 

5) are modeled with plate elements.  

 
Figure 3: Schematic of a skin-stiffener structure. 

 

 
Figure 4:  (a) Box structure (b) Box structure with two cells (c) Skin with two 

stiffeners. 

 

 

Figure 5: Plate-plate coupling 

Stiffener is at an angle 90 degrees (anticlockwise) to the skin element 1-2 and hence, 

before assembling the elements 1-2 and 2-3, the stiffness matrix of the element 2-3, 

which is obtained in the local coordinate system (X1Y1Z1, Fig. 5) is transformed in to 

global (XYZ, Fig. 5) coordinate system using a transformation matrix [T] of order 10 

x 10 given by 

 

(3) 
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where [Kl]n,m is the element stiffness matrix in the local coordinate system (X1Y1Z1, 

Fig. 5), [Kg]n,m is the transformed stiffness matrix in global coordinates (XYZ, Fig. 5) 

at each n and m and q is the rotation of the plate with respect to Y axis. In the next 

step, the stiffness matrix of element 1-2 and 2-3 can be assembled using a method, 

which is similar to the method of assembly, in conventional FEM. 

Hence, the stiffened structure shown in Fig. 3 is modeled by assembling spectral plate 

elements, 1-2, 2-3, and 2-4 and the global stiffness matrix is of the order 20 x 20. The 

box structure, which is shown in Fig. 4(a) is modeled by assembling spectral plate 

elements, 1-2, 2-3, 3-4, and 4-1 (Global stiffness matrix is of order 20 x 20). 

4. MODELING OF STIFFENED STRUCTURES USING 2D PLATE 

ELEMENTS AND 1-D BEAM ELEMENTS 

 

In a stiffened structure analysis, usually the stiffeners are modeled as beam elements, 

especially, when they are thick sections. Hence, in this section, skin is modeled as 

spectral plate element and the stiffener is modeled as a Timoshenko beam element 

and they are coupled using a special procedure. The method of coupling the 2D 

spectral plate element with a 1D beam element is completely different from that of the 

method of assembling spectral plate elements (Section 3) since the plate elements 

solution involves summation of temporal and spatial modes (Eqn (2)) while the beam 

element has only summation of temporal modes. Summation of temporal mode is 

achieved using N number of frequency points, which is same for both the plates and 

beam elements. However, a plate element is also discretized spatially (in the Y 

direction), using Fourier series and is having M number of terms, as given in Eqn. (2). 

These M points are distributed evenly along the Y direction and at each of these 

points we need to couple the plate and beam stiffness matrices. Hence, in order to 

model a stiffener, which extends throughout the width (Y direction) of the skin 

structure (which is modeled using plate element), we need to assemble the stiffness 

matrix of the skin element (plate element) and the stiffener element (beam element) 

(for all N frequency values (ωn), Eqn (2)), at each value of horizontal wavenumbers 

(ηm, Eqn(2)) used in the plate element formulation.   

In the present study, stiffness matrix for the plate element is of order 10 x 10 and it 

varies with frequency (ωn) and wavenumber (ηm) while the composite beam stiffness 

matrix is of the order 6 x 6 and varies only with frequency (ωn). Nodal displacement 

vector of the beam element (element 2-3, Fig. 6) in the wavelet domain is 

and the same for plate element (element 1-2, Fig. 6) is 
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Figure 6:  Plate-beam coupling. 

In this study, the skin-stiffener structure, as shown in Fig. 3, is modeled by assuming 

spectral plate element model (Section 2) for the skin (1-2 and 2-4, Fig. 6) and a 

spectral beam element (Section 2) for the stiffener (element 2-3, Fig. 6) structure. 

Hence, in order to couple the plate element (1-2, Fig. 6) to the beam element (2-3, 

Fig. 6), at each value of the horizontal wavenumber (ηm), we should vary the value of 

frequency (ωm) and add the corresponding dynamic stiffness matrix obtained for the 

beam element and plate element, which is given by 

 

Here, the subscript n and m remind one that the coupled stiffness matrix is evaluated 

at a particular value of ωn and ηm. The transformed coordinate system (X1Y1Z1, Fig. 

6) for the beam element formulation is shown in Fig. 6, which is obtained by rotating 

the global coordinate system (XYZ, Fig. 6) anticlockwise, by 90 degrees.The stiffness 

matrix for a vertical beam element (Kgbeam, Eqn. (6)) at each value of ωn is obtained 

by transforming the stiffness matrix obtained in the local coordinates (X1Y1Z1, Fig. 6) 

to global coordinates (XYZ, Fig. 6), in the same way, as we explained in Section 3. 

This is achieved by the transformation matrix T of order 6 x 6 given by 

 

(4) 

(5) 

(6) 

(7) 
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where [Kl]n is the element stiffness matrix in local coordinates (X1Y1Z1, Fig. 6, at 

each n), [Kgbeam]n is the transformed stiffness matrix in the global coordinates (XYZ, 

Fig. 6, at each n) and  (90
0
 Fig. 6) is the rotation of the plate with respect to Y-axis. 

A plate-beam coupled (coupling the elements,1-2 and 2-3 in Fig. 6) stiffness matrix is 

of the order 13 x 13 and finally while modeling a stiffened structure (Fig. 3), the 

global stiffness matrix is obtained by assembling the plate elements 1-2, 2-4 and the 

beam element 2-3 and this is of the order 18 x 18. 

 

5. MODELING STIFFENED STRUCTURE WITH T-SECTION, I-SECTION 

OR HAT SECTION USING PLATE-BEAM COUPLING 

 

In this section, we model wave propagation in skin-stiffener structures with stiffeners 

of various cross sections, which are shown in Fig. 7.  

 

 
Figure. 7.: Different cross sections of the stiffeners considered for the study  

(1. T-section 2. I-section, and 3. Hat section.) 

 

Here, the skin is modeled using spectral plate element and each part of the stiffener 

structure is modeled by spectral beam element (Section 2). However, before going to 

the analysis, we need to develop a method to couple plate and beam elements, where 

the beam is parallel to the plate and placed directly over the plate element, as shown 

in Fig. 8.  

 

 
 

Figure. 8.: Schematic model of a beam placed directly over a plate element. 

 

Here, a beam is attached over a plate, where the mid-planes of the plate and beam are 

parallel and the mid-plane of the beam is at a distance, ‘e’ (Fig. 8) from that of the 

plate mid-plane and hence this offset in the mid-planes of the plate and beam is 

considered while coupling the elements. This coupled element can be modeled using a 

kinematic assumption for the interface of plate and beam, which is similar to the 

assumptions used in the references, Nag et al. (2003) and Thinh and Khoa (2008). The 

displacement compatibility between the stiffener and the plate is ensured by the beam 

elements displacement field, which is interpolated from plate elements nodes. The 

kinematic assumption for the interface of skin and stiffener is that the cross-section 

remains straight i.e. the slope is continuous and constant at the interface. Under this 

Distribution Code A:  Approved for public release.



assumption, one can obtain the following equations for the nodal displacements (Fig. 

8) 

 

        
where the subscripts 1,2,3 and 4 are the corresponding nodes. Similarly total nodal 

forces at 1 and 2 can be written as 

 

where, Nx, Vx and Mx are the axial force in X direction, shear force in Z direction and 

bending moment about Y axis, respectively. The subscript i and j denotes the node 

numbers of the plate and beam, respectively. Hence, the structure given in Fig. 8 can 

be modeled as a single element, where the nodal displacements of the beam can be 

expressed in terms of the nodal plate displacements (Eqn (8)) and the nodal forces can 

be expressed, as given in Eqn. (39). Element stiffness matrices for the plate and the 

beam can be obtained (explained in Section 2) and at each value of the horizontal 

wavenumber (ηm), we couple the plate stiffness matrix and the beam stiffness matrix 

(for all N frequency values), to derive the coupled plate-beam stiffness matrix. The 

plate-beam coupled stiffness matrix is of the order 10 x 10, and is obtained as follows: 

 

where [Kgplate],  is the stiffness matrix for the plate element 1-2 and 

  Both the plate and beam stiffness matrix is 

obtained in XYZ coordinate system (global and local coordinates coincides), which is 

given in Fig. 8. Vertical beam element can be coupled by transforming the stiffness 

matrix in the local coordinate to global coordinates in the same way, which is 

explained in Section 4. 

 

 

(8) 

(9) 

(10) 

(11) 
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6. RESULTS AND DISCUSSION 

 

6.1. Wave propagation in stiffened and built-up structure using plate-plate 

assembly: 
 

In this section, the SFEM model, based on the spectral plate element assembly 

(Section 3), is used for obtaining the wave responses of a composite skin-stiffener 

structure (Fig. 3) and a box structure (Fig. 4(a)). Here, skin and stiffener of stiffened 

structure and all the faces of a box structure are considered as laminated composite 

plates and hence the whole structure can be modeled by the concept of assembling 

spectral plate elements, as explained in Section 3. The material used for the 

constituent laminated composite plates, is a GFRP composite, which has the 

following material properties: E1=144.48 Gpa, E2=E3=9.63 Gpa, 

G23=G13=G12=128GPa, 23= 0.3, 13= 12 =0.02 and 12 = 1389 kg/m
3
. In all the 

study, composite laminate considered consist of 8 layers and the thickness of each 

layer is assumed as 1 mm, unless specified otherwise. First, the model is validated by 

comparing the responses obtained from the SFEM model with that of the responses 

obtained using the 2D FE analysis. The model is then used, for a parametric study in 

stiffened structures, which includes the study of the effect of lay-up sequence, 

thickness and height of the stiffeners (element 2-3, Fig. 3), on the wave responses and 

also the model is applied to model multiple stiffened and multiple cell structures. The 

basic goal of this study is to extract the effect of flexural-axial coupling (due to the 

presence of stiffeners) in a skin-stiffener structure, on the wave responses. Transverse 

velocity responses obtained from the structures are mainly considered in the present 

study. However, some axial responses are also shown for comparing the responses 

with the transverse responses. In all the study, the responses are measured at the same 

point, where we apply the load. 

6.1.1. Validation of SFEM model: 

The SFEM model developed is first validated by comparing the transverse velocity 

responses of a stiffened structure and box structure obtained using the model with that 

of the responses obtained from 2D FE model. In SFEM, to model a skin stiffener 

structure with one stiffener (Fig. 3), three spectral plate elements are required, which 

results in a system matrix of order 20. In the case of a box structure (Fig. 4(a)), SFEM 

model needs only four spectral plate element, where the system matrix is of the same 

order 20. Skin-stiffener structure used for the study is 0.8 m in X- direction, 1.6 m in 

Y direction and a stiffener of 0.5 m height is attached at 0.6 m away (in X-direction) 

from node 1 (Fig. 3). Box structure extends to 1 m in X and Z directions and 2 m in Y 

direction. Material properties and other parameters of the laminate are same as we 

mentioned in the previous section (section 6). In SFEM, load is transformed to the 

frequency domain where 1024 sampling points are used. For spatial variation, 30 

Fourier series coefficients are considered. In FE analysis, structure is modeled using 

4-noded plate elements and to model the symmetric part of the skin-stiffener structure 

or the box structure, having geometric parameters as mentioned above, the analysis 

requires minimum 10,000 elements. While solving via FE analysis, Newmark’s time 

integration method is adopted with a time increment of 1 s. In the present study, in 

order to validate the accuracy of the plate-plate and plate-beam coupled models, we 

are interested mainly in the time of arrival of first reflection from the skin-stiffener 

junction (node 2, Fig. 3) and the top of the stiffener (node 3, Fig. 3). Hence, in order 

to maintain the consistency in the comparison, the length of the structure in the Y 
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direction is taken in such a manner that the reflection from the boundary will not 

reach with in the time frame of our interest. In this report basically we study the 

coupling between the symmetric longitudinal (axial) mode u (S0 mode) and the anti-

symmetric flexural mode w (A0 mode). In this work, we use a broadband load 

(frequency content-70 kHz) and a tone-burst signal, modulated at 30 kHz, which is 

similar to the signals used by Gopalakrishnan et al. (2008). In each case, a transverse 

load is applied at a point and the response is measured at the same point. Both the 

structures are fixed at node 2. 

 

Figure 9: Transverse velocity response (a) skin-stiffener type structure (b) box 

structure. 

Fig. 9(a) shows the transverse velocity response at node 1 (Fig. 3) of a skin-stiffener 

structure. Fig. 9(b) shows the transverse velocity responses at node 1 and at the 

midpoint of bottom skin (1-2, in Fig. 4(a)) of a box structure. Here, in all the plots, the 

waveform at 100 ms is the incident pulse. In Fig. 9(a), reflection (A0 mode) from the 

junction of skin and stiffener starts (node 2, Fig. 3) at 0.62 ms and the reflection (S0 

mode) from the top free end of stiffener (node 3, Fig. 3), which is present due to the 

flexural-axial coupling, starts at 0.72 ms (marked in circle, Fig. 9(a)). Similarly, in the 

response at midpoint of the bottom skin (1-2, in Fig. 4(a)) of the box structure, 

reflection (A0 mode) from the junction between the bottom skin and vertical plates 

(node 1 or 2, Fig. 4(a)) starts at 0.6 ms and the reflection (S0 mode) from the top skin-

vertical plate junction (node 3 or 4, in Fig. 4(a)) starts at 0.8 ms (Fig. 9(b)). In a box 

structure, for the response at node 1, the reflection (S0 mode) from the junction 

between the top skin and vertical plate (node 4, in Fig. 4(a)) initiates at 0.3 ms and the 

reflection (A0 mode) from the junction between the bottom skin and vertical plate 

(node 2, Fig. 4(a)) starts at 1.1 ms. In wave propagation analysis, the time gap 

between the incident pulse and the time for first reflection is a measure of the group 

speeds. Hence, if we know the distance traveled by the wave and the time gap 

between the incident pulse and reflected pulse, we can obtain the speed of the wave. 

Here, in the present study, the symmetric axial mode travels (at 10000 m/s) five times 

faster than the anti-symmetric flexural mode. The difference in the distribution of the 

mass of the structure causes a small difference in the amplitudes of the responses 

obtained using SFEM and FEM models. However, when we compare the results, 

there is an excellent match in the time of arrival of reflections, in the results obtained 

using both the models. In fact, the parameter, time of arrival of first reflection is the 

most important parameter, when we actually use the model for structural health 

monitoring applications. The wave propagation analysis of the structures mentioned 
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above, using FE analysis, needs large system size and consequently large 

computational time, when compared to the performance of the SFEM model. Here, in 

order to obtain the velocity responses for the stiffened structure, FEM model requires 

115 min, while the SFEM model needs only 32 min (MATLAB code, Intel Core 2 

Quad processor). The computational efficiency of SFEM depends on the total time 

window required to avoid the problem due to enforced periodicity and the time 

window can be adjusted by changing the time sampling rate or the number of FFT 

points. The increase in frequency further reduces the total time window needed for the 

analysis and consequently reduces the computational time (Ajith and Gopalakrishnan, 

2011). However, in the conventional FEM, with the increase of frequency, the 

requirement of size of the element to be comparable with the wavelength makes the 

problem size so large that it becomes computationally prohibitive, especially in the 

high frequency range. Further, we can see that the effect of flexural-axial coupling 

due to the presence of stiffeners or the connecting plates, are well captured by the 

SFEM model. 

6.1.2. Wave propagation in stiffened structures with stiffeners of rectangular cross 

section 

In this section, we conduct a parametric study in a stiffened structure (Fig. 3). Here, 

skin and the stiffener are modeled as spectral plate element and these three plate 

elements are assembled, as mentioned in Section 3. The composite plates considered 

in this study consist of 8 layers and the material properties of each plate are same as 

the material properties, which we used in the validation section (Section 6.1.1). In the 

skin (1-2 in Fig. 3), each layer is 1 mm thick and the lay-up sequence is symmetric 

[0]8. In most of the study, the load is applied in the transverse direction and the 

transverse responses are plotted. Axial responses are shown, only in a few cases, in 

order to compare the axial responses with that of the obtained transverse responses. 

The flexural-axial coupling in the wave response of a skin-stiffener structure due to 

the bonding of stiffeners on the skin needs to be analyzed. Skin is fixed at node 4 

(Fig. 3). Load is applied at the free end of the structure (node 1, Fig. 3) and the 

responses are measured at the same point. The stiffener is placed in between the fixed 

and the free end of the structure (2-3, Fig. 3). Length of the skin structure in X and Y 

direction and the stiffener height are given inside the bracket while explaining each 

result. In all the case, the length of the structure in Y direction is taken larger 

compared to that of its length in X direction in order to avoid the effect of boundary 

reflections from the free end. 

In wave propagation analysis, the real wavenumbers will only propagate. Here, we are 

interested in the study of flexural-axial coupling present in the wave responses of the 

stiffened structures. Hence, in the rest of the study, we choose either a broadband 

pulse of bandwidth 70 kHz or a tone-burst pulse, modulated at 30 kHz as the impact 

load. This is necessary to avoid the presence of shear modes (, ). 

 

(a) Effect of height and thickness of the stiffener on the wave responses: 

In the first case study, the effect of the height of the stiffener, on the transverse 

response is studied and the results are plotted in Figs. 10 and 11 (X =1 m, Y = 2 m 

and stiffener height varied from 0.5 m to 1.5 m). Even though the applied load is in 

the transverse direction, due to the flexural-axial coupling, S0 mode is generated in the 
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stiffener and the trace of this mode can also be seen in the transverse velocity 

response of the skin-stiffener structure. The reflections (marked in circles, in Fig. 10) 

from the stiffener top (node 3, in Fig. 3) starts at 0.7 ms, in a 0.5 m high stiffener, 

where as in a 1.5 m high stiffener, the reflection will only start at 0.85 ms. The change 

in the time of arrival of first reflection from the stiffener with the change in the height 

of the stiffener can also be noticed in Fig. 12 (change from 0.7 ms to 0.85 ms), using 

the tone-burst signal. Change in thickness of the stiffener has different impact in the 

reflections (A0 mode) from the skin-stiffener junction (node 2, in Fig. 3) and the 

reflections from the top end (node 3, Fig. 3) of the stiffener (S0 mode). Increasing the 

thickness of the stiffener from 8 mm to 16 mm decreases the amplitude A0 mode 

whereas it increases the S0 mode (Fig.12(X=1m,Y= 2m and stiffener height = 0.5 m)). 

 

Figure 10:  Transverse velocity response of skin-stiffener structure with different 

stiffener height, applying broadband load. 

 

Figure 11: Transverse velocity response of skin-stiffener structure with different 

stiffener height, applying tone-burst load. 
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Figure 12: Transverse velocity response of skin-stiffener structure, varying the 

stiffener thickness, by applying tone-burst load. 

(b) Axial and transverse wave responses: 

The variation in the responses by changing the direction of the applied load from 

transverse to axial is shown in Fig.13 (X = 1 m, Y = 2 m and stiffener height = 0.5 m). 

The amplitude of the axial response is very small compared to the transverse 

responses. The trace of the reflections (A0 mode) from the top of the stiffener can be 

noticed in the axial responses, which is due to the axial-flexural coupling. In axial 

responses, the effect of the change in length of stiffeners is not a significant factor, 

compared to the transverse responses (Fig. 13). Hence, in order to study the effect of 

bonding a stiffener in a skin structure, transverse responses are plotted in the rest of 

the study. 

 

Figure 13:  Transverse and axial response of skin-stiffener structure, applying 

tone-burst load. 
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(c) Wave propagation in a multiple stiffened structure: 

Here, the number of stiffeners in a skin-stiffener structure is increased from one to 

two (Fig. 4(c)) and the response is obtained and is shown in Fig. 14. Skin is 2 m in X 

direction, 4 m in Y direction. In the case of single stiffener structure, stiffener is 

attached at 1 m away (in X direction, stiffener 2 in Fig. 4(c)) from the application of 

the load. In a double stiffener structure, in addition to the previous case, one more 

stiffener is attached at a point, 0.5 m from the point of application of the load 

(stiffener 1 in Fig. 4(c)). With the addition of a stiffener, additional reflections (both 

S0 and A0) are present (starts at 0.5 ms, in Fig. 14) in the wave responses. Hence, we 

can conclude that the SFEM plate-plate assembly model captures the effect of 

multiple stiffeners, quite efficiently. 

 

Figure 14: Transverse velocity response of skin-stiffener structure, varying the 

number of stiffeners, by applying tone-burst load. 

6.2. Wave propagation in stiffened structure with stiffeners of rectangular cross 

sections using plate-beam assembly 

In this sub-section, wave responses of a skin-stiffener structure are obtained using the 

SFEM model, which we discussed in Section 4. First, the model is validated by 

comparing the results obtained using the SFEM model with that of 2D FEM model, in 

Section 6.2.1, in the same way as we illustrated in Section 6.1.1. The model is then 

applied to perform the high frequency analysis of a multiple stiffened structure. In 

both the analysis, we use stiffeners of rectangular cross section (Fig. 3). The material 

properties and geometric properties of the skin and the stiffeners are same as that we 

used in the previous study using plate-plate assembly. Further, the load is applied at 

node 1 (Fig. 3), which is the free end and the responses are obtained at the same point, 

in the same manner as in Section 6.1.1. 

6.2.1. Validation with 2D FE results. 

Stiffened structure (Fig. 3) is modeled using two plate elements (1-2 and 2-4, Fig. 3), 

which represent the skin structure and a vertical beam element, which represent the 

stiffener (skin: X = 1 m, Y = 2 m and stiffener height = 0.5 m). Global stiffness 

matrix is of the order 18 x 18. The 2D FE analysis, performed here for the 

comparative study, is same as the analysis, which we used in Section 6.1.1. Fig. 15(a) 

shows a reasonable match between the SFEM model and the 2D FE model, which 

Distribution Code A:  Approved for public release.



shows the accuracy and the efficiency of the SFEM model. From the plot, it is 

observed that the SFEM model, which include the plate-beam coupling, captures both 

A0 mode (at 0.6 ms, Fig. 15(a)) and S0 (at 0.7 ms, Fig. 18(a)) mode from the stiffener, 

accurately and with a small system size. Here, SFEM model (1024 frequency points) 

needs 30 min to perform the wave propagation analysis in the stiffened structure, 

while FEM requires 115 min.   

 

Figure 15: Validation of plate-beam SFEM model with (a) 2D FE analysis (b) 

Experimental results. 

6.2.2. Validation with Experiments:. 

In wave propagation modeling, plate-beam coupling is a new concept and hence to 

confirm the accuracy of the plate-beam model, we compare the results obtained from 

the model also with experimentally obtained results. In this section, transverse 

response of a stiffened structure (skin: X = 0.125 m, Y = 0.260 m and stiffener height 

= 0.075 m, stiffener located at the middle of the skin) obtained from experiment is 

compared with the response obtained from a plate-beam SFEM model. In SFEM, the 

structure is modeled in the same way as we did in the case of FE validation. Material 

properties of the skin and stiffeners are same as that we used in the previous section. 

A tone-burst signal modulated at 100 kHz is used as the load. Excitation is applied 

using Lead Zirconate Titanate (PZT) wafer active patch (15 mm diameter and 2 mm 

thickness) which was bonded to the structure. A 3D Laser Doppler Vibrometer (LDV) 

is used as the sensor to obtain the velocity response of the structure (Geetha Kolappan 

et al., 2012). LDVs measure velocities in the out of-plane direction by 

interferometrically measuring the change in frequency and phase of the back scattered 

laser light reflected from the surface. The result (Fig. 15(b)) shows that the reflections 

from the skin stiffener junction (A0 mode) is well captured by the SFEM model and it 

matches quite well with the experimental results (reflections at 0.12 ms, 0.21 ms and 

0.27 ms in Fig. 15(b)). In this study, the stiffener height is small and hence unlike the 

previous studies, it is difficult to distinguish the reflections from the top of the 

stiffener (S0 mode, which is five times faster than A0 mode), which is merged with the 

A0 mode reflections from the skin-stiffener junction, in the velocity response. 

7. CONCLUSIONS: 

SFEM based models, are developed to study the wave propagation in box structures 

and stiffened structures, using the concept of assembling the existing 2D plate and 1D 

beam elements, which are spectrally formulated. The method of assembling the plate 

elements to model a stiffened structure or box structure is very simple and straight 

forward. However, we also developed a SFEM model, which can model wave 
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propagation in a plate-beam coupled stiffened structure. Both the SFEM models show 

excellent match with the 2D FE results. The accuracy of the plate-beam coupled 

model is confirmed by comparing the response obtained from the model with 

experimentally obtained response. Further, the models require only small system size 

and consequently less computational time, compared to 2D FE analysis while solving 

high frequency wave propagation problems of built-up composite structures. The 

effect of flexural-axial coupling on the wave responses is well captured using the 

SFEM models. The influence of geometric and the other laminate properties of the 

out-of plane components (stiffeners), which introduces the coupling, on the wave 

responses is studied, especially to characterize the change in the coupling due to the 

shift in these parameters. The wave propagation analysis of multiple cell box 

structures, multiple stiffened structures and also stiffeners of various cross sections 

(T, I and hat) is performed using the present SFEM models. The forward SFEM 

models thus developed can be used for the structural health monitoring applications of 

a general stiffened structure or box structure. The responses obtained for the healthy 

structures in the present study can be actually used to detect damages in a damaged 

composite stiffened structure, by comparing the responses obtained from the model 

with that of the experimentally obtained responses from the damaged structure. 
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